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Abstract-The problem is reduced to a system of two singular integral equations for determining the interface
slope and shear stress. The dominant part of the system is analyzed to determine the order of the stress
singularity and its dependence on the elastic constants. After removing logarithmic singularities from the
right hand sides we solve these equations numerically for several chosen composites and the interface slope
and traction are exhibited graphically. The solution should be relevant in studying adhesive joints by means
of a bending test.

INTRODUCTION
In [I] the solution was given for joined semi-infinite elastic strips in tension. In (2) the end
problem for a semi-infinite strip was solved for point-wise traction, displacement or mixed end
conditions. This solution was applied there to several specific problems including extension,
bending, and flexure for fixed end; compression against a rigid circular cylinder (smooth and
rough); and the pointwise normal traction problems of extension and bending with cosine and
sine distributions, respectively. The singular integral equation obtained in [2] for the bending
problem considered there had the added complication of a logarithmically singular function in its
right hand side. This difficulty was not resolved in [2] and no numerical results were given there
for the bending case.

Here the antisymmetric solution given in (2) is used in the manner of [I) to solve the bending
problem for the bimaterial strip. The problem is reduced to a system of two singular integral
equations. Then the dependence of the order of the stress singularity, at the point of intersection
of the material interface and lateral boundary, on the material parameters is extracted from the
integral equations. The difficulty of logarithmic singularities in the right hand sides of the
equations occurs here also, but it is successfully dealt with by use of a special technique. Finally,
the integral equations are solved numerically and the bond tractions and displacements are
computed and graphically illustrated.

FORMULATION OF THE PROBLEM

Consider the two isotropic homogeneous elastic semi-infinite strips of width 2h characterized
by the elastic constants J.L", /I" and J.L', /I' (Fig. la). Let the strips be joined at X2 = 0, free of
traction on Ixd= h, and loaded far from the interface by a linear normal stress in the xrdirection
which produces the resultant couple - M on any plane of fixed h Accordingly, we wish to find
the two-dimensional stress and displacement fields 5" ={f", o"}, 5' ={f' ,o/}, that satisfy the
appropriate elasticity equations for X2 > 0, X2 < 0, respectively, and meet the boundary conditions

f~2~0, f~2~ -(3M/2h 3)x,; Ixd < h, X2~OO,

f':,=f':2=0; Ixd=h, 0<X2<OO,

f;, = f;2 = 0; Ix.1 = h, -00 < X2 <0,

as well as the interface continuity conditions
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Fig. I. Superposition of simple bending and residual solution.

AUXILIARY SEMI·INFINITE STRIP SOLUTIONS

In order to obtain the solution S", S' satisfying (I), (2), the solution depicted in Figs. Ib, c will
be superposed. The solutions S", S' in Fig. Ib are the simple bending solutions given byt

S: III = (3M !8h'1L )["(XI 2- h 2) +(I - ")X/]

112 = -(3M!4hl1L)(I- ")XIX2' Til = TI2 = 0, T22 = -(3M!2h')x), (3)

with (') or (") attached to 1L, ", II", ';"/3 for S" or S'. The semi-infinite strip solutions depicted in Fig.
Ie can be obtained from the antisymmetric solution in [2]. For 5' this solution appears as

(4)

~(1) u/,(x), X2) = - L< ([f'( 1/) - (I - 2,,')g'(1/)] cosh (1/X I) + 1/X Ig'( T/) sinh (T/X I)}T/ -I sin (1/X2) d1/

+ f. < {- SX2c!>'(S) +[-2+2,,' - SX2]SW'(S)}s -I exp (SX2) cos (sx I) ds,
(I

~ (1) u~(x), X2) = - r([f'(1/) +2(1 - ,,')g'(1'/)] sinh (T/XI)

+ 1/X Ig'( T/) cosh (1/xd}1/ Icos (1/X2) d1/

+L~ ([3 - 4,,' - SX2]c!>'(S) + [I - 2,,' - SX2]SW /(s)}s -I exp (SX2) sin (SXI) ds,

2~' ~ (1) T~I = - r[f'(1/) sinh (1/XI) + 1/XIg'(1/) cosh (1/XI)] sin (1/X2) d1/

+ f." ([2,,' + SX2]c!>'(S) + (2 +SX2]SW'(S)} exp (SX2) sin (sx,) ds,
(I

2~' ~ (¥) T;2 =r ([f'(1/) +2K'(1/)] sinh (1/XI) + 1/Xlg'(1/) cosh (1/X I )} sin (1/X2) d1/

+I.' ([2 - 2/1' - sX21c!>'(s) - (SX2)sw'(s)}exp (SX2) sin (SXI) ds.
Il

tThe solution will be derived here for the plane strain determination of Poisson's ratios. The generalized plane stress
interpretation follows from the appropriate change in Poisson's ratios.
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2~' ~ (!D r'12 = - r{[f'(1]) +g'(1])l cosh (1]X I) + 1]X Ig'(1]) sinh (1]X I)} cos (1IX2) d1j

+L~ ([1- 2v' - sX2l4>'(S) +[-1 - sX2l sw '(s)} exp (SX2) cos (sx t ) ds.
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This solution is obtained in [2] from the superposition of infinite strip and half-plane solutions.
The corresponding solution S" can be inferred from S' in (4) by the following replacements

The lateral boundary conditions (lh and (lh will be satisfied provided f', g' (j", g") are given in
terms of 4>', w' (4)'', w'.1 by

I(1]) ={C(4>, w)( 7J )[cosh (1]h) +1]h sinh (1]h )]- L 2( 4>, w)(1])[1]h cosh (1]h)]}
x [sinh (1]h ) cosh (1]h) +1/h r.,

g(T/) = {-L 1(4), w)( 1/ )[cosh (1]h)] +L 2(4), w)( 1] )[sinh (1]h )]}[sinh (T/h) cosh (1/h) +1]hr l (6)

in which

Equations (6) and (7) are valid for (') or (") attached to all of I, g, 4>, w, v. Finally 4>, ware related to
Ut(XI, 0) and rn{x .. 0) by

(8)

where

in which the upper signs are used for S" and the lower ones for S'.
Notice that because of (8), (9), the semi-infinite strip solutions S', S" accommodate the mixed

end boundary conditions of odd normal traction and even tangential displacement. It can also be
verified that (4) satisfies the conditions

rj; ~O as X2~ :too, i, j = 1,2,
(10)

Without loss in generality we fix infinitesimal rigid displacements such that

(11)

In addition to the boundary functions in (9) we need for (2) the functions U2(X .. 0) and
rI2(x .. 0). If we define 4> .. 4>2 in terms of <1>, {} by

4>bt) = 21-' y(2/1T )<I>(XI) = =+= [1T(l - v lr Irn{X.. 0),

4>bl) = 2I-'y(2/1T)(d/dxt){}(xl) = :t[21-'/1T(1- v)](d/dxl)ubh 0),
(12)
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then it follows from (4)-(9), (12) that (see (2) for details)

(13)

in which

and aij, kij are defined by

all=(3-4v)/2, a I2=-a21=-(l-2v)/2, a22=1/2,

hkli(X" t) = A.(v, v, y, T), hk2j (x" t) =A(v, I, y, T), i = \, 2,

y = xl/h, T = t/h,

and A are defined (for p = I or v) by

(14)

(15)

I (X .
A,(v, p, y, T) = 2Jo [Ajl(v,p, T,~) cosh (~y) + Adv,p, T, O~y smh(~y»)

x [sinh { cosh ~ +HI exp [-{(I - T») d{ (16)

with

A,,(V, p, T,~) = -[1- 2v - W - T»)(cosh {+ {sinh~) - [2 -2v - {(I- T)){ cosh {

+(3 - 2p)[2- 2v - ~(I- T») sinh {+ (3 - 2p)[I- 2v - ~(I- T») cosh {,

A I2(V, p, T,~) = [2- 2v - {(I- T)) sinh {+ [1- 2v - {(I- T)J cosh {,

A 21 (V, p, T, {) = -[I +{(I- T)](cosh {+ {sinh {) - {(I- T){ cosh {

+(3 - 2p)[ I +{( I - T») cosh { + (3 - 2p ){( I - T) sinh {,

A 22(V,P, T,~) = [I + {(I- T)) cosh {+ {(I- T) sinh {.

(17)

Notice that if T22, UIare known at X2 = 0, so that 4>" 4>2 are known, eqn (13) gives (d/dx I)U2 and
TI2 there. Conversely, if U2, TI2 are known at X2 =0, so that gl, g2 are known, (13) represents a
system of integral equations for determining (d/dx,)u, and T22 there.

REDUCTION TO A SYSTEM OF INTEGRAL EQUATIONS

Next we determine <P', 11', <P", 11" in the solutions S', S" so that (I)" (1)4 and (2) are satisfied.
The superposition is

5" = S" +S", 5' = S, +S', (18)

with S", S, given by (3) and S", S' given by (4)-(9). In view of (10), (3), the solutions 5", 5' given
by (18) satisfy (I)" (1)4' so all that remains is to satisfy (2). With the use of (3), (12)-( 14) and (18), it
follows that (2) requires

(19)

which gives four equations for 4>;, 4>';, j = 1,2, or, from (12) for <P', <P", (d/dx,)11', (d/dx,)11". The
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first two of (19) allow us to eliminate t/Ji from the last two of (19) to arrive at the system of two
equations

(20)

in which

bll = a'!lk(1- v/)/(1- v/')+ a~t.

b12 =a72(1- v')/(1- v'') +a ;2, b21 =-kb l2,

bn = a;2(1- v/)/(1- v'') +ka ;2, k = Il //Il",

III = [k'!,k(1- v/)/(1- v'') +k;tl,

112 = [k72(1- v')/(1- v'') +ka

12, = [k;lk(1 - v/)/(1- v'') +kk ~I]'

122 = [k;2(1- v')/(1- v") + kk~2]'

h(x.) = -ML: [t ~~~, +k~b .. t)] tdt,

M= [2/1T(1 - v'')](3M /4h 3)(kv" - v/).

(21)

We observe formally that t vanishes for material combinations such that Il' v" = Il"v'. From
(20) this implies that the t/Jj vanish if there are no eigenfunctions, and (19) then implies t/J'; also
vanish. It follows from (12) that <1>, n vanish and hence (6) predicts that S/, S" vanish. For these
combinations S/, S" in (3) supply the entire solution. In general the t in (21) do not vanish and, as
will be apparent later on, the integrals define functions with logarithmic singularities at x, = ±h.
These singularities must be removed before (20) can be solved numerically.

ANALYSIS OF THE SINGULAR INTEGRAL EQUATIONS

The integral eqns (20) are singular as is apparent from the Cauchy kernels. The kernels IIj are
also singular due to the behavior of the integrands in (16) as {~OO. Also, the integrands in (16)
have a first order singularity at { = 0 that must be removed. In the manner of [l, 2] we use the
condition

to replace A, in (16) by

Al = L~ aj d{ = A,~+ AiR,

AiR = f(ai-at-ai)d{+ f~(al-and{+~U,

al~ = {[-I +2v + (3 -4v)(3 - 2p - {) - (5 - 4p - 2{){(1- T)] cosh ({y)

+[3 - 4v - 2{(1 - T)]{y sinh ({y)} exp [-{(2 - T)],

a2~ = {[2 - 2p - ~ +(5 - 4p - 20~(1 - T)] cosh (~y)

+[l +2~(1- T )]~y sinh (~y)} exp [-~(2 - T )), j = 1,2,

iJJo = d,rl cosh (~y) exp [-~(1- T»), j = 1,2,

dl =(1-p)(1-2v)/2, d2=(1-p)/2,

U(y, T) = i (-1)" (1- T ~ y)" + i (-1)" (1- T~ y)",
,,_I nn. ,,_I nn.

(22)

(23)
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A,~ = r~ a
i
oc d~,

Jo
A,oc

= [3/2 +4vp - 5v - p +(3 + 2v - 2p)(I- y)(d/dy) - (1- YfW/dl)J(2- T - y) ,

+ [3/2 +4vp - 5v - p - (3 + 2v - 2p)(I + y)(d/dy) - (I + y)2(d2/dy2)J(2 - T + y) "

A 2°C = [7/2 - 3p - (5 - 2p )(1- y)(d/dy) + (1- dW/d y 2»)(2 - T - y) I

+ [7/2 - 3p + (5 - 2p)(I + y)(d/dy) + (I + y)2W/dy2»)(2- T + y) '.

The integrals and series in (23) converge for all values of (y, T) in [-I, I) x [-1, 1) and define
regular kernels A,R. The singular parts of Ai are given by A,~. In view of (20), (21), (15), (16) we
can decompose the kernels Ii} in (20) in the same way, i.e.

Iii = I~+ I~. (24)

In order to determine the singularities in the solutions 4J ~ of (20) we use the methods or (3) and
write (20) as

(25)

where

(26)

so that Bj(x,) contains at most logarithmic singularities on Ixd~ h provided the singularities in 4J~

are integrable. According to [3, Chap. 4) we define H/(t) through

(27)

where Re(YI) < I and Hi (t) satisfies a Holder condition. The appropriate singular integral analysis
leads to the following condition for determining the indices Y; in (27);

y, = Y2 = y,

ll(y) = det [-h ii cos (7TY) + nil(Y») = 0,

where

nil = M,(v", v", y)k(l- v')/(I-v")+ M,(v', v', y),

n
'
2= M 2(v", v", y)(I-v')/(I-v")+ M2(v', v', y),

n21 = Mb", I, y)k(l- v')/(I- v") + kM,(v', I, y),

n22 = Mb", I, y)(I - v')/(I - v')/(I - v") + kMb', I, y),

in which (for p = I, v)

M,(v, p, y) = 3/2- 5v - p +4pv +(3 + 2v - 2p)y - y(y + I),

Mb,p, y) = 7/2-3p -(5 -2p)y + y + I).

(28)

(29)

(30)

According to (21) and (28H30) y apparently depends on the elastic constants v', v" and
k = 11' /11". We expect from [1), [5) that this dependence should be expressible in terms of the two
composite parameters a, f3 introduced in [4) and defined for plane strain by

k(l- v") - (I - v') k(l- 2v") - (1- 2v')
a = k(l - v") + (I - v')' f3 =2k(l- v") +2(1- v')' (31)
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It can be verified from (21) and (28)-{31) that

A( 'Y) = -4[(1- v')/(I- v")][k(l - v") +(1- V,)]2D(a, 13; 'Y - 2)

where D(a, 13; 'Y - 2) is given in [5] as
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(32)

D(a, 13; 'Y -2) = [cos2(1'77"/2)-(1- ·dfl3 2 +2(1- 'd[cos2 (1'77"/2) - (1- 'd]al3
+ (I - 'Y f[(I - j' f - I]a 2 +cos2

(j'1T /2) sin2 (1'77" /2), (33)

and since the coefficient of D in (32) cannot vanish for 0~ v ~ t 0~ k < x it follows that the
solutions 'Y of (28) are also given by

D(a, 13; 'Y -2) =O. (34)

The values of 'Y satisfying (34) and Re( j') < I for all physically relevant values of a, f3 were
given in [l] and are reproduced here in Fig. 2. As observed in [I] 'Y is real and satisfies 0< 'Y < 1
for a(a - 213) > 0, 'Y =0 for a(a - 213) =0 and 'Y < 0 for a(a - 213) < O. Therefore the functions
4>i(t) are bounded at the singular points t = ±h for a(a - 213) ~ O. A numerical technique for
obtaining approximate solutions of (20) can be found in [6] for the case when the right hand side is
bounded. We can use this technique with slight modification to solve (20) in the presence of the
logarithmically singular /;.

f3
03

Fig. 2. Dependence of index 'Y on composite parameters a, {1

REMOVAL OF THE LOGARITHMIC SINGULARITIES

Before we can apply the quadrature method in [6] to eqn (20) we must remove the logarithmic
singularities from the functions /;. First we show under what conditions these singularities arise.
For this we need the integral expressions

I I T dT = 2+y In (I - y),
-I T - Y 1+Y

~o f. C(~)(+1)~(I + y)~* (2 - T + yrlT dT = 4C(2)(3 + yr2

+C(I) [2 G:n+(I + y) In G:;)]-C(O) [2 +(2 + y) In G:;)]. (35)
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From (15), (23) and the above integrals we obtain

(36)

where

~,(x;}lh = 2ai; + 4CW[(3 - yf2 + (3 + yr2
) + C:? [4 (~=~:)

+(1- y)ln G= :)+(1 + y)ln G:;)]
- C\7'[4 - (2 - y) In (3 - y) - (2 + y) In (3 +Y»), (37)

l,(x;)lh = aiiY In (: ~ ;) - C7'[(2 - y) In (1- y) + (2 + y) In (I + y»)

in which the coefficients C:;' can be obtained by comparing 05), (23) with (35), (36). We see that
~, is bounded in lyl:5 I, but l, has logarithmic singularities unless C:7) = ail' Since
C\cq = -3v +7/2, al2 = v - 1/2, and C~cq =an:r 1/2 it follows that /1 in (20) is singular whereas 12
is bounded.

In order to remove the logarithmic singularity from II we define new unknowns iJi in (20) by

(38)

where F is a constant to be determined. With (38) we can write (20) as

(39)

where

!I(XI) = -[M + FO - v')/O - v'')) [L: k':;'(X., t)t dt + !':bl) + l:2(X I) ]

-F[L: k':2'(X.,t)tdt+f;2(xl)+i;2(xl)]. (40)

With use of (37) in (40) it is apparent that l are bounded on Ix l l:5 h provided

F = - M( I - v")/20 - Vi). (41)

Thus the system (39), with unknowns defined in (38), has a bounded right hand side (40) when F is
given by (41).

NUMERICAL SOLUTION OF THE SYSTEM OF INTEGRAL EQUATIONS

By use of the numerical methods in (6) the singular integrals in (39) can be approximated
directly by quadrature methods. The quadrature formula to be utilized depends on the index 'Y
appropriate to the functions et>1' For the values determined by (34) the Gauss-Jacobi formula
must be used. The integrals in l in (40) can be evaluated by use of Simpson's rule.

In terms of dimensionless variables y, T, defined in (IS), eqn (39) appears as

~ JI [~ hi h h ] ~j(T)dT - '(h~ _ + lj(y, T) (1- 2).,.-Jj y),
1=1 1 T Y T

(42)
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in which
.frj(T) = (Mt)(I- T2r.

The algebraic system of order 2N corresponding to (42), (22) is
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(43)

N

~ AJilii(TJ) =0,
J-I

i= 1,2,
(44)

where the latter equations results from (22), (38) and it must be appended to complete the system,
since J = 1,2, 0'0' N but K = 1,2, .. 0' N -1 when TJ, YK, AJ are determined in the Gauss-Jacobi
scheme, i.e.

= _ 2(N - 1 + 1) r 2(N - 1 +1) 2-2y
AJ (N+1)!(N-2y+l)f(N-2y+l)P,:/ 'Y·-'Y)(TJ)P~~·I-Y)(TJ)'

P ('Y.'Y)( ) = f(1 +N + 1) ~ f(21 +N +k +1)(T - I)k
N T f(2y+N+1)~ok!(N-k)!2kr(y+k+l)'

T], J = 1,2, ° 0 0' N are N roots of PN(-'Y'-Y)(T) = 0,

YK, K =1,2, 0'0' N - I are N -1 roots of p~-=-';.I-Y)(y) =o.

(45)

NUMERICAL RESULTS AND DISCUSSION

The system (44) was solved numerically for six different composites, which are identified by
their elastic constants k, v', v" in Fig. 3. Also given in the table are the corresponding composite
parameters a, f3 as computed from (31) and the index y as obtained from Fig. 2 with these values
of a, f3. All of the composites chosen give positive values of y.

After the bounded functions Jil were obtained we computed T~2(X" 0), T;bl, 0) and du~/dxl at
X2 = O. From (12), (43)

(46)

while (13), (14) and the quadrature procedure give

k
0 00 a fJ y" "

CD 0 .5 -I 0 .410

® 0 .2 -I -.375 .221

@ .111 .5 .5 -.8 0 .295

@ .111 .5 0 -.636 -.091 .240

® .333 .5 .5 -.5 0 .145

® .059 .47 0 -.8 0 .295

010

0.
" 0.05
'~
i'
'",,'
~

~ O.

-0.05
0.5 10 x,/h

(47)

Fig. 3. Interface normal stress for various composites.
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Fig. 4. Interface shear stress for various composites.
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Fig.5. Interface slope for various composites.

Figure 3 gives the residual interface normal stress (2h 2/3M)-r!n(x " 0). Fig. 4 shows
(2h 2/3M)TI2(X., 0) and Fig. 5 displays the interface slope (4h\,/3M)(d/dxl)u2(x" 0).

Next we observe that the solution obtained here should agree with the clamped semi-infinite
strip bending solution in [3] in the limit when the upper semi-strip becomes rigid. When jJ, II -+ 00 so
that k -+ 0, and by (31) a -+ -I, we obtain from the second of (20) with (21)

from which there follows

(49)

With this the first of (20) yields

for determining cf>;. Equations (49), (50) agree with (45) of [2]. Furthermore, the index 'Y in Fig. 2
of [2] corresponds to 'Y in Fig. 2 at a = -1. Hence the reduction is complete. The right hand side
of (50) has a logarithmic singularity which can be removed by replacing cf>; by 4>. +Ft and
determining F in the same manner as above.

Finally, we observe from Figs. 3 and 4 that the interface traction is the same for both
composites 3 and 6, as it must be since the a, f3 are identical in both cases (see [4]). The same is
not true of the interface slope in Fig. 5.
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